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The early three-dimensional stages of transition in the Blasius boundary layer are 
studied by numerical solution of the Navier-Stokes equations. A finite-amplitude 
two-dimensional wave and low-amplitude three-dimensional random disturbances 
are introduced. Rapid amplification of the three-dimensional components is observed 
and leads to transition. For intermediate amplitudes of the two-dimensional wave 
the breakdown is of subharmonic type, and the dominant spanwise wavenumber 
increases with the amplitude. For high amplitudes the energy of the fundamental 
mode is comparable to the energy of the subharmonic mode, but never dominates 
it ; the breakdown is of mixed type. Visualizations, energy histories, and spectra are 
presented. The sensitivity of the results to various physical and numerical parameters 
is studied. The agreement with experimental and theoretical results is discussed. 

1. Introduction 
Our ability to understand, predict, and control the transition of fluid flows from 

laminar to turbulent states is far from satisfactory, in spite of decades of effort. 
Transition is very sensitive both to the exact shape of the basic laminar flow and to 
the detailed characteristics (amplitude, spectrum, etc.) of the disturbances, whether 
they are associated with the stream or with the surface. Natural transition is very 
intermittent and thus is difficult to measure. The control of transition would allow 
significant improvements in many applications ; for instance, reduced skin-friction 
drag or higher lift coefficients for wings, or enhanced mixing for combustion and 
chemical reactions. 

Several stages can be distinguished as one observes the transition of a boundary 
layer, starting from upstream. A t  first the disturbances, within the basic laminar 
flow, are small enough to be described by the linear Orr-Sommerfeld equation 
(Schlichting 1979). The ‘linear’ behaviour of single two-dimensional and oblique 
TollmienSchlichting (TS) waves is well understood, but in practice numerous waves 
compete and grow simultaneously. The slow thickening of the boundary layer adds 
to the complexity of the situation. In any case, linearized theory is insufficient to 
predict transition, because it fails to predict the large growth rates that are observed. 
The linear stage is followed by an ‘early nonlinear’ stage during which nonlinear 
effects become significant, but the disturbances are still rather weak and the flow is 
still smooth. The nonlinear effects are revealed by much larger growth rates of some 
of the disturbances, which are invariably three-dimensional. Two-dimensional 
nonlinear effects, such as the saturation of a TS wave, are benign and are unable to 
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induce transition, probably because of the absence of vortex stretching. Finally, there 
is a strongly nonlinear stage which leads to the fully turbulent boundary layer, with 
intense, fine-scale three-dimensional fluctuations. 

The early nonlinear stage has been the subject of recent experimental, theoretical, 
and numerical work (Thomas 1983; Kachanov & Levchenko 1984; Saric, Kozlov & 
Levchenko 1984; Craik 1971; Herbert 1984, 1985; Wray & Hussaini 1980; Spalart 
1984). Because the flow is still smooth, this stage is easier to study than the strongly 
nonlinear stage. It is also more important in terms of transition control, because full 
transition is inevitable once the strongly nonlinear stage has been reached. Thus, 
efforts to prevent transition (for instance pressure gradients, suction, or even active 
control of the waves) must be applied during the early stage, at  the latest (Zang & 
Hussaini 1985b; Kleiser & Laurien 1985; Laurien & Kleiser 1985). 

In most experimental studies a two-dimensional wave is introduced by means of 
a vibrating ribbon, so that it dominates the other unstable waves during the linear 
stage. This makes the experiment more reproducible. The theoretical and numerical 
studies, excepting Craik’s (1971) work, also involve a dominant two-dimensional 
wave. This procedure should be considered as a first step toward the study of ‘natural ’ 
transition. Natural transition generally involves wave packets, rather than single 
waves. 

In the experiments of Klebanoff, Tidstrom & Sargent (1962) and Kovasznay, 
Komoda & Vasudeva (1962), with a vibrating ribbon, the first strong three- 
dimensional structures to appear were quasi-periodic in the streamwise direction, 
with the same period as the fundamental wave. The structures were also quasi-per- 
iodic in the spanwise direction, with a period of the same order. Spanwise material 
lines, often visualized by smoke, deform into A-shaped lines, suggesting the presence 
of ‘A vortices’ (however, since the flow contains distributed vorticity the concept 
of a ‘vortex’ is only loosely defined). As these structures evolve, and presumably 
under the effect of vortex stretching, the flow exhibits an increasing number of steep 
fluctuations or ‘spikes’ in the velocity field, which are the first signs of turbulence. 
This phenomenon was accurately simulated, numerically, by Wray BE Hussaini 
(1980). Similar simulations were conducted in the channel by Orszag & Kells (1980). 

The significant discovery of the last few years is that the streamwise period of the 
early three-dimensional structures can also be twice the period of the TS wave 
(Thomas 1983; Kachanov & Levchenko 1984; Saric et al. 1984). This is the 
‘subharmonic’ type of breakdown, in which the A-structures are staggered as on a 
checkerboard. The experiments also indicate that subharmonic breakdown occurs for 
low and intermediate amplitudes of the TS wave, while the ‘fundamental’ or 
‘peak-valley’ type occurs for higher amplitudes. If the wave amplitude is too low, 
it fails to cause transition and decays. Craik (1971) and Herbert (1984) have proposed 
small-disturbance theories that can predict an instability of the subharmonic type. 
Craik’s model involves a resonant triad (a two-dimensional wave and two oblique 
waves), while Herbert’s model involves the linear instability of three-dimensional 
waves in the presence of a finite-amplitude two-dimensional wave (secondary 
instability). Craik’s mechanism is thought to dominate at low amplitudes (hence the 
designation C-type), while Herbert’s mechanism describes intermediate-amplitude 
situations better (hence the designation H-type). Another version of Herbert’s theory 
also predicts the fundamental or K-type breakdown (Herbert 1985). 

The discovery of subharmonic breakdown presented a new challenge for numerical 
simulations. Preliminary results of the present study, presented by Spalart (1984), 
indicated that the two types of breakdown were indeed predicted, depending on the 
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amplitude (see also Zang & Hussaini 1985a and Laurien & Kleiser 1985). The 
quantitative agreement with experiments was fair. More complete and accurate 
results are presented here (a relatively minor programming error was corrected). 

Experiments, small-disturbance theories, and numerical simulations all comp- 
lement each other in the study of transition. Compared with small-disturbance 
models a direct numerical study, while more expensive, has several advantages. The 
simulation is fully nonlinear and the ‘shape assumption’ invoked by Herbert (1984) 
is not necessary. The spectrum is much larger, although it is still bounded and 
discrete. Random disturbances can be introduced and monitored concurrently in 
order to compare several possible instability mechanisms. Ensemble averages can be 
generated. The boundary-layer thickness and the amplitude of the primary disturb- 
ance evolve, as they do in the real flow, which has an impact on the secondary 
instability (a quasi-steady assumption is not made). Visualizations of the flow can 
be compared almost directly with experimental visualizations. The extension to more 
complex cases (pressure gradient, suction, crossflow, etc.) is straightforward. On the 
other hand, with the present method the mean flow is still treated as parallel and 
the fluctuations as spatially periodic, with transition occurring in time instead of 
space. Wray & Hussaini (1980) also used a parallel assumption and periodic 
conditions, mainly for reasons of computational cost. When the flow undergoes 
transition the range of length- and timescales widens rapidly, making an accurate 
numerical solution increasingly costly. The implications of these periodic assumptions 
will be discussed. 

Besides the boundary conditions, the major choice to be made in a simulation of 
transition is the choice of the initial disturbances. In  their numerical studies, Wray 
& Hussaini (1980, in the boundary layer) and Orszag & Kells (1980, in the channel) 
used a single pair of oblique waves aa the initial three-dimensional disturbances. Their 
spanwise wavenumber was chosen to match experimental results. In  the present 
study white noise was used as the three-dimensional disturbance in an effort to 
remove any bias. This required the use of a much larger period in the spanwise 
direction to provide a fine enough approximation of the continuous spectrum of the 
real flow. This large value of the period resulted in a fairly coarse numerical grid and 
prevented the extension of the simulations deep into the nonlinear stage. However, 
the present simulations can predict the dominant spanwise wavenumber instead of 
assuming its value, and the narrow- or broadband character of the instability. In  
some experiments there is evidence that the dominant spanwise wavenumber is 
dictated by persistent non-uniformities in the mean flow or in the two-dimensional 
wave (this was intentional in the work of Klebanoff et ul.). However, in practical 
situations the disturbances (surface waviness, defects in the screens, free-stream noise, 
etc.) are more likely to have a random character. 

2. Formulation 
The approach is to solve the full, time-dependent, three-dimensional Navier-Stokes 

equations in the half-space over a plane wall. The initial condition is a Blasius 
boundary layer disturbed by a finite-amplitude, two-dimensional TS wave and 
low-amplitude, three-dimensional random noise. This corresponds to the conditions 
of an experiment in which the TS wave would be generated by a vibrating ribbon. 
It remains to choose proper boundary conditions; that is, to find a good compromise 
between the desire to conduct a thorough and unbiased simulation of the physics and 
the desire to obtain an accurate numerical solution at a reasonable cost. 

12 PLP 178 
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In  the experiments the disturbance introduced by the vibrating ribbon is periodic 
in time and quasi-periodic in the 2-(streamwise) direction, in the sense that its 
amplitude and shape vary very little over one wavelength. In  addition, at the early 
nonlinear stage, the experiments reveal spatial structures (A vortices) that are 
quasi-periodic both in the 2- and in the z-(spanwise) direction. The wavelengths in 
the two directions are of the same order. 

These observations suggest that periodic conditions in x and in z, with adequate 
values for the periods, should allow a valuable numerical simulation of the pheno- 
mena. Transition will occur in time instead of space, and only one or a few A-vortices 
will be contained in the numerical domain. Periodic conditions are mathematically 
convenient and allow a dramatic reduction in the size of the domain of integration, 
compared with a simulation that would represent the whole spatially developing 
boundary layer at once. On the other hand, they will result in a significantly different 
mean velocity profile unless a correction is made. 

With periodic conditions in z, the mean flow is independent of z and parallel. The 
mean velocity component U is a function of the normal coordinate y and the time 
t , and satisfies 

The density is set to 1 and omitted, v is the kinematic viscosity and 7 is the Reynolds 
stress (7 is defined as -(u’v’), where u’ and v’ are the fluctuations with respect to 
the mean flow U(y, t ) ,  V = 0 and ( ) denotes an average over the x- and z-directions). 
During the linear stage 7 is negligible and (1) reduces to Stokes’ first problem 
(U,  = vUvv), for which the solution is a thickening error function. While this profile 
resembles the Blasius profile (both having zero curvature at the wall), its stability 
characteristics are quite different. The critical Reynolds number based on the 
displacement thickness S* and the free-stream velocity U ,  is about 2000, instead of 
520. This would make comparisons with experiments impossible, as illustrated in the 
next chapter. This is why it was decided to add a small correction to the 
Navier-Stokes equations so that the laminar solution has a Blasius profile. 

In  addition, in the spatially developing boundary layer the TS-wave amplitude 
and the boundary-layer thickness grow simultaneously, on the same long ‘viscous ’ 
lengthscale U, c Y * ~ / v .  A given wave becomes unstable and starts growing when the 
flow crosses ‘Branch I ’ on the stability diagram (Schlichting 1979). It becomes stable 
again and starts decaying when the flow crosses ‘Branch 11’. If the mean flow did 
not evolve, the wave would experience sustained exponential growth or decay. This 
difference is important, and it was decided that the modified form of (1) should allow 
the thickness to grow in time, while retaining a Blasius profile. The procedure is the 
following. 

The solution of the Blasius equation provides the boundary-layer protile U&, X) 
as a function of y and of X, the distance from the leading edge. A linear correspondence 
between time t and distance X is made: 

x = X,+ct .  (2) 

The celerity c is chosen to match the growth rate of the boundary-layer thickness 
and the growth rate of the TS wave. The group velocity cg is known to relate the 
temporal growth rate of spatially periodic TS waves and the spatial growth rate of 
time-periodic waves, if the growth rates are small and the mean flow is treated as 
parallel (Gaster 1962). Thus, c should be taken equal to cg. The group velocity is not 
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quite constant, because the boundary layer thickens, but this effect is weak. In the 
range of Reynolds numbers considered here, the group velocity is between about 
0.38Um and 0.42Um. A constant value c = 0.4Um will be used. 

Introducing (2) into the function UB(y, X) defines the ‘desired’ mean velocity 
profile UB(y, t ) .  The correction consists in adding the quantity aUB/at - va2UB/ay2 
to the U-component momentum equation. It depends only on y and t .  Equation (1) 
becomes 

If, in addition, the initial profile is 

the solution U(y, t )  of (3), (4) will satisfy 

as long as T is negligible. This applies to the laminar flow, and to the transitioning 
flow until the disturbances reach a nonlinear level. 

This procedure of solving the mean momentum equation, albeit with an artificial 
term added, is preferable to the cruder procedure of just imposing (5 )  for all times, 
because it allows the disturbances to deform the mean-velocity profile and extract 
energy from it. The beginning of the nonlinear stage is clearly indicated. In practice, 
one can monitor the shape factor H of the mean profile (H is defined as S*/8 where 
S* is the displacement thickness and 8 the momentum thickness). The correction term 
acts only on the mean flow, and has no direct effect on the fluctuations. Of course, 
when the velocity profile loses its Blasius shape, the correction becomes inadequate. 
However, breakdown occurs on the fast, convective timescale &*/Urn and the 
correction term, which acts on the slow, viscous timescale C?*~/V, has little effect. This 
fact was recognized by Wray & Hussaini (1980). They did not apply any correction 
but started their simulation shortly before breakdown, so that the mean profile 
remained close to the initial Blasius profile until breakdown occurred (the displace- 
ment thickness increased only by about 20%). In the present study the boundary 
layer is followed for a much longer time (so that the dynamics can select the most 
unstable three-dimensional disturbances), hence the need for a correction. The 
displacement thickness roughly doubles during the simulation. 

The numerical method designed by Spalart (1986) for the solution of the three- 
dimensional time-dependent Navier-Stokes equations in a half-space is used. This 
method is spectral in space, with inhite-order accuracy, and uses second-order- 
accurate finite differences in time. The correction term is easily handled by the 
Runge-Kutta time-integration scheme. The initial TS-wave amplitude is varied to 
obtain different types of breakdown. The overall amplitude of the random disturb- 
ances is also varied, as is the sequence of computer-generated random numbers. The 
amplitude of the three-dimensional random disturbances is statistically the same for 
all wave vectors in the (2, %)-plane (white noise). The disturbances also extend all 
across the domain in the y-direction ; several types of random y-dependence were tried 
without causing significant differences in the results. Thus the (arbitrary) 
disturbances are as unbiased as possible. Introducing selected three-dimensional 
disturbances is of course possible, but the resulting proliferation of additional 
parameters with unknown practical significance was thought to be undesirable. 

12-2 



350 P.  R.  Spalart and K.-S. Yang 

- 

l:-i; ........................................................................ ---- ------ - 

2.0 ..... ................... .................... ............. ........ ....... 

._. - 10-2 

umls 

10-3 

10-3 I 0.0 
0 200 400 600 800 1000 1200 1400 1600 1800 

1 

FIGURE 1.  Comparison of simulations with and without forcing. With forcing: ---, shape factor 
H; ..., TS-wave amplitude. Without forcing: ---, shape factor; -, TS-wave amplitude. 

3. Results 
3.1. Physical and numerical parameters 

The spatial and temporal accuracy of the method, when applied to a single TS wave, 
was tested by Spalart (1986). These tests showed very good accuracy with the 
resolution that will be used throughout, namely 27 Jacobi polynomials and a value 
of about 36*/U, for the time step. The amplitude ratio of the wave, from Branch I 
to Branch 11, is also of interest and depends directly on the value of c .  With 
c = 0.4U, the ratio is about 17 for the TS wave that will be considered in this study, 
which is the right magnitude. In  the experiments of Saric et al. (1984) the ratio was 
about 25, and part of the growth was an artifact due to the smoke wire disturbing 
the mean flow. 

Figure 1 shows the effect of forcing the mean-velocity profile (see (3)). It would 
of course be preferable not to have to add such a term and justify the value of c .  Two 
simulations were conducted with the same initial condition: a Blasius mean profile 
and a two-dimensional TS wave, part-way between Branch I and Branch 11. The 
duration of the simulations was typical, extending beyond Branch 11. The forced 
simulation displays a constant shape factor; the wave grows until a time of about 
900 and then decays. In contrast, in the unforced simulation the shape factor reaches 
about 2.4, the error-function value, in about 700 time units. More importantly, the 
wave starts decaying at time about 400 and its amplitude is much lower than in the 
forced simulation. This test shows that unless the simulation is started shortly before 
breakdown, in which case the flow will not have time to lose memory of the shape 
of the initial three-dimensional disturbances, forcing is necessary to maintain even 
a reasonable correspondence with the spatially developing flow. 

The three-dimensional results will now be described. The conditions of Saric et al.’s 
(1984) experiment were reproduced as closely as possible. In a spatially developing 
boundary layer the frequency f of the TS wave is independent of X. In a time- 
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developing boundary layer it is the streamwise wavenumber a that is independent 
of t .  The non-dimensional frequency F and the non-dimensional wavenumber a,  
defined by 

are related by 

F = 103%, (7) 
urn 

where c+ is the phase velocity of the wave. The quantity c+/ U ,  varies slightly in the 
neighbourhood of 0.36 as the thickness grows, so that F varies by a few percent in 
the simulation. With the wavenumber a set to 0.21, F is close to 76, the value chosen 
by Saric et al. (1984). The Reynolds number R = (U,X/v): at Branch 11, for 
a = 0.21, is about 920. 

When periodic conditions are imposed in a numerical simulation the values of the 
periods A, and A,, in the x- and z-directions, are to some extent arbitrary. Larger 
values are preferable, but increase the computational cost. The period A, must be 
a multiple of the period ATs of the TS wave to accommodate it ; subharmonic waves 
are also expected. This motivates the choice A, = 2ATs. Thus the lowest streamwise 
wavenumber in the simulation is a = 0.105. The period is about 40 times the 
displacement thickness at Branch 11. There are 16 points in real space, and 5 non-zero 
wavenumbers. In the z-direction the lowest wavenumber is b = 0.035; the numerical 
period is about 120 displacement thicknesses. This large period is chosen to allow a 
fine description of the spectrum in the z-direction. In most cases, there are several 
z-wavenumbers within the bulge in the spectrum. Depending on the cases, there are 
48 or 96 points in the z-direction. The two-dimensional spectra that will be presented 
show how, in high-amplitude cases, higher spanwise wavenumbers develop significant 
energy. This is why 96 points are used for these cases, while 48 are sufficient at low 
amplitudes. The same plots show that the resolution in the 2-direction is sufficiently 
fine. 

With these values, the Reynolds number based on the free-stream velocity and the 
grid spacing in the 2- or z-direction is several thousand; the grid can be quite coarse 
because the viscosity plays a very weak role in these directions. This is acceptable 
as long as the flow is smooth, but when breakdown occurs the spectrum ‘fills up ’ very 
rapidly and the simulation is no longer reliable. Simulations deeper into the 
breakdown phase will be possible only with much finer resolution and presumably 
with a smaller domain (Wray & Hussaini 1980). 

The most important parameter is the maximum root-mean-square (r.m.s.) ampli- 
tude A,, of the TS wave. This maximum is taken versus both y and X (or R). In  
the X-direction this peak corresponds to Branch 11, unless nonlinear effects are 
present. If A,,, is below about 0.4 %, three-dimensional breakdown does not occur 
while the TS wave is the dominant disturbance (breakdown occurs much later, with 
a different mechanism). Between 0.4 yo and about 3 %, subharmonic C- or H-type 
breakdown occurs, with increasing spanwise wavenumber. Above 3 % a mixed-type 
breakdown is observed; a clear-cut K-type breakdown is never observed. In the 
experiments, the threshold amplitudes were lower: about 0.25 % for subharmonic 
breakdown, and 1 % for K-type. These discrepancies have already been observed by 
Spalart (1984) and will be discussed further. 
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FIGURE 2(a-d). For caption see facing page. 
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FIGURE 2. Flow visualization by passive particles. s-direction streamwise, y normal, z spanwise; 
-, vorticity contours. (a)  Initial position; (b ) ,  (c), (a') at different times before three-dimensional 
breakdown; (e) before breakdown, with large number of particles; (f) beginning of breakdown, 
A,,, = 1 % ; (9)  beginning of breakdown, A,, = 1.5 yo ; (h)  beginning of breakdown, A,,, = 4.8 % . 
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3.2. Visualizations 
Visualizations of the flow using passive particles will be shown first, and can be 
compared with the experimental visualizations using smoke (Saric et al. 1984). The 
motion of the particles is computed using linear interpolation in space and the 
Runge-Kutta third-order scheme in time (see Spalart 1986). Figure 2 (a) shows the 
initial position of the particles. The coordinates are non-dimensionalized by U, and 
10%. The non-dimensional displacement thickness is between 1.25 and 2. Six spanwise 
lines of 144 particles each are released at regular intervals in 5. The height of release 
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is adjusted 80 that the particles are near the critical layer when breakdown occurs. 
This is important: by keeping the particles in phase with the flow structures one 
greatly enhances the correspondence between the particle-line pattern and these flow 
structures. The particles cannot be exactly in the critical layer, if only because this 
layer moves up as the boundary layer thickens. 

Figure 2 (b) shows the particles after some time, but before three-dimensional 
effects are felt. The particles clustered into two bundles, revealing the two TS waves 
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FIGURE 4. Two-dimensional energy spectra before breakdown ; a streamwise wavenumber, b 
spanwise; energy scale logarithmic, base 10. (a) A,,, = 0.1 %. R = 1108; ( b )  A,,, = 1 %, R = 913; 
(c) A,,, = 1.5%, R = 912; (d )  A,,, = 4.8%, R = 855. 

contained in the domain. Since the observation of these bundles as they subsequently 
deform is a major tool in both experimental and numerical studies, it  is important 
to know which part of the wave is marked by the bundles. In particular, do they follow 
a ‘vortex’? Figures 2 (c, d )  are plots in an (z, y)-plane in the same situation as figure 
2 ( b )  (under the effect of the two-dimensional wave, but before breakdown) and at 
two different times. The y-direction is magnified. The positions of the particles and 
vorticity contour are superimposed. Figures 2 (b, c, d) are typical of the behaviour at 
other times. The particles tend to gather in regions of higher-than-average vorticity, 
which are indicated by the upward bending of the vorticity contours. 

This gathering is statistical rather than systematic. If a large number of particles 
is released, they form a ‘cloud’ which is densest in the high-vorticity region (see figure 
2e). Figure 2(e) corresponds most closely to the experimental situation, in which 
smoke is continuously emitted by the smoke wire and forms one cloud per TS-wave 
period. In a reference frame moving with the phase velocity of the wave, the 
trajectories in the vicinity of the critical layer are shallow orbits. As a result, the 
particles that are caught in these orbits form a cloud that follows the wave. What 
figure 2(e )  shows is that the centre of the orbits roughly coincides with the ‘vortex’ 
carried by the TS wave, which was not obvious a pyiori. 

Figure 2 (f) shows the particles at the time of breakdown, with A,,, = 1 %, 
revealing a staggered pattern. The spanwise wavenumber b is 0.14, in very good 
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agreement with the value of Saric et al. (1984). Figure 2 ( g )  is at A,,, = 1.5%; the 
pattern is still staggered but is less regular, and the structures are narrower; b is about 
0.2 .  This value agrees with the value measured by Saric et al. for an H-type 
breakdown, but their value of A,,, was different (0.4 %). The appearance of figures 
2(f ,  g )  is very similar to the experimental visualizations. Figure 2 ( h )  is at 
A,,, = 4.8 yo ; the breakdown pattern is irregular, with the A-structures staggered in 
some regions and aligned in others. A breakdown pattern with the A-structures all 
aligned was never observed for any wave amplitude and time of visualization. This 
will be discussed further. 

3.3. Quantitative results 

Figure 3 shows histories of the shape factor H of the boundary layer, the amplitude 
of the TS wave, and the r.m.8. of the three-dimensional fundamental components 
(oblique waves with the same streamwise wavenumber as the TS wave) and 
subharmonic components (wavenumber half that of the TS wave). The r.m.s. is 
defined with respect to the average over an (z, z)-plane ; the maximum of this quantity 
versus y is then taken, and is plotted versus R. The shape factor is plotted to signal 
when the mean-velocity profile starts to depart from the Blasius shape. When 
breakdown occurs, H shows a clear tendency to decrease from its laminar value of 
2.6 toward the turbulent value, about 1.5. 

In  figure 3(a ) ,  A,,, = 0.1 %. This amplitude is too low for breakdown to occur 
while the TS wave is the primary disturbance. There is a period of growth of the 
subharmonic mode. A referee to this paper pointed out that this growth could reflect 
the primary instability of the subharmonic mode, and not be related to the 
two-dimensional wave; this point will be discussed below. The TS wave decays 
beyond Branch 11, following linear theory. The fundamental-mode energy also decays 
steadily. In figure 3(b) ,  with A,,, = 1 yo, the subharmonic component becomes 
unstable, grows rapidly, and causes breakdown. A similar behaviour is observed in 
figure 3 ( c ) ,  with A,,, = 1.5 % . In  both cases, a sudden reversal of the decay of the 
TS wave is the first indication of nonlinearity. This was also observed by Kachanov 
& Levchenko (1984). The TS wave is presumably receiving energy from the 
subharmonic components throughout the nonlinear term (the subharmonic ampli- 
tude has reached several percent). Finally, in figure 3 (d )  with A,,, = 4.8 %, the 
fundamental-mode energy becomes significant. However, it does not dominate the 
subharmonic energy. In this last case, the occurrence of breakdown is revealed by 
the shape factor and the TS-wave amplitude simultaneously. 

Figure 4 presents a more detailed description of the fluctuations, using two- 
dimensional spectra. The u component in an (z, 2)-plane was Fourier transformed in 
the x- and z-directions and the energies of the four wavevectors ( &a,  f b) were added. 
The plane chosen is near the critical layer; the fluctuations are known to be quite 
strong in that layer. A logarithmic scale is used for the energy, and values lower than 

are not plotted to distinguish between the random noise and the relevant, 
energetic wave vectors. Except for the mean flow and the TS wave, any component 
that exceeds in energy has experienced a significant amplification since the 
beginning of the simulation. In  the far corner of the figure is the mean component. 
Along the far-left boundary are the two-dimensional components (the TS wave and 
its higher harmonic). 

In  figure 4(a) with A,,, = 0.1 yo a three-dimensional wave, while not strong 
enough to cause breakdown, has been amplified and is clearly defined. The spectrum 
shows a sharp peak with spanwise wavenumber 6 = 0.14 which suggests that the 
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FIGURE 5. Growth-rate of three-dimensional disturbances. Present results : , subharmonic; 
x , fundamental. Herbert (1985): 0, subharmonic; +, fundamental. 

growth cannot be due to primary instability, for the primary instability is not very 
selective in terms of spanwise wavenumber (the unstable region is kidney-shaped and 
centred on the b = 0 axis). In  figure 4(b) with A,,, = 1 % the subharmonic 
component dominates, with a sharp peak at b = 0.14 (as indicated by the visualiz- 
ations) and a swelling at higher values (b x 0.25). At a higher amplitude, 1.5 yo, the 
spectrum is much broader (figure 4c). There is still a peak at b = 0.14, but there is 
also a broad band of energetic wavenumbers from b x 0.1 to b x 0.7. These results are 
in agreement with Herbert (1984). At the highest amplitude, A,,, = 4.8 %, both the 
subharmonic and the fundamental mode have acquired energy and have a broad 
spectrum (figure 4 4 ,  which results in the disordered pattern of figure 2 (h). Again the 
results agree with Herbert’s (1985) results, in that the subharmonic mode is still 
strong even at  high TS-wave amplitudes. 

To make a quantitative comparison between Herbert’s results and those obtained 
here, the growth rates computed by Herbert (1985) at F = 58.8 and A = 1.4% were 
computed with the present method. The boundary-layer thickness and the TS-wave 
amplitude were artificially kept constant to simulate Herbert’s conditions (quasi- 
steady assumption). The flow was allowed to evolve until the growth rates of the 
three-dimensional disturbances became steady, indicating that the most unstable 
components had been selected. The comparison is shown in figure 5, using Herbert’s 
units, and is satisfactory. 

The determination of the dominant spanwise wavenumber allows one to test 
Craik’s hypothesis (Craik 1971). For Craik’s mechanism to explain the growth of the 
oblique waves, their phase velocity and that of the two-dimensional wave must be 
close. In figure 6 ( a )  the band of energetic spanwise wavenumbers is plotted as a 
function of A,,,. The wavenumbers were deduced from the visualizations; they 
increase with A,,,. In figure 6 ( b )  the phase velocity (in the x-direction) of the 
two-dimensional and of the dominant oblique waves are plotted. When A,,, exceeds 
about 1 yo, most of the energy is carried by wavenumbers that do not satisfy Craik’s 
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FIGURE 6. Characteristics of dominant subharmonic waves. (a) Spanwise wavenumber; 
(b)  phase velocity. 0, three-dimensional waves; + , TS wave. 

criterion. These results support Herbert’s (1984) contention that Craik’s mechanism 
is active at low TS-wave amplitudes, but cannot account for all of the three- 
dimensional activity at high amplitudes. Herbert’s model describes ribbon-induced 
transition better; Craik’s may be more relevant in natural transition. 

3.4. Sensitivity to some of the parameters 
The disturbance created by a vibrating ribbon in an experimental boundary layer 
is not a pure TS wave, and it takes some distance for the other components to decay. 
In addition the ribbon and the smoke-wire disturb the mean-velocity profile (Saric 
et al. 1984). This is why they must be far enough upstream of the region where 
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FIQURE 8. Effect of random-number sequence, A,,, = 1.5%. 0,  TS wave; 
+ , three-dimensional waves. -, first sequence ; ---, second sequence. 

measurements are taken. This distance is the ‘fetch’. I n  the simulations a pure TS 
wave can be input, and the mean profile is not disturbed a t  all. Thus the need for 
a long fetch is not as strong. However, the three-dimensional disturbances are 
random, and no attempt is made to control their shape. Thus there is a period during 
which the various components get sorted so that only the unstable, or weakly stable, 
ones survive. This is revealed by figure 3:  the shape factor remains at 2.6 and the 
amplitude of the TS wave grows smoothly from the initial station, but the 
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FIUURE 9. Simulation with increased Az, A,,, = 1.5%. See figure 2(g). 

three-dimensional energy has rapid variations at the very beginning of the simulation. 
However, figure 3 also shows that this ‘unphysical’ regime is over long before 
breakdown occurs. This means that the fetch is long enough. The smoothness of the 
spectra, presented in figure 4, confirms this impression. Simulations were conducted 
with longer fetches (starting near Branch I) and the results were not significantly 
different . 

The type of the breakdown mostly depends on the peak amplitude A,,, of the TS 
wave. However, it also depends on the initial amplitude A,, of the three-dimensional 
random disturbances, or ‘noise level’, especially if A,,, is near a threshold. 
Simulations were conducted with A,, = 0.5 % and two values of A,D. The r.m.8. of 
the three-dimensional components, after the initial transient, was about 2 x and 
2 x respectively. The results are shown in figure 7. Breakdown occurs only with 
the higher value of A,,,. This illustrates the impossibility of sharply defining threshold 
values in terms of A,,, alone. The difference between the experimental and the 
numerical estimates of the lowest value of A,,, that will result in breakdown (0.25 % 
and 0.4 %, respectively) is not serious. 

The effect of the random numbers used for the initial disturbance was also studied. 
Figure 8 shows the energy histories for two simulations which had the same 
disturbance amplitude but different random-number sequences. The three- 
dimensional energy is at slightly different levels, but the growth pattern is the same. 
Because of the different level of energy, breakdown occurs at slightly different 
stations. The scatter in the breakdown Reynolds number is of the order of 10, and 
is quite small compared with the scale of the early stages of transition, which is 
hundreds of Reynolds-number units. This result suggests that the use of random 
numbers for the initial disturbance is appropriate. 

Finally, the effect of the computational periods Az and Az which, ideally, would 
be infinite, was studied by doubling them. Figure 9 is a visualization of the flow with 
Az doubled and A,,, = 1.5%. The breakdown pattern is still somewhat irregular, 
but is obviously an H-type. There are no major differences between this figure and 
figure 2 (g). This indicates that the original value of Az is sufficient. The period Az 
was then doubled, to investigate the possibility of another period-doubling in the 
x-direction, similar to the difference between K- and H-type breakdown. Figure 10 (a) 
is a visualization of the flow. The difference between the two halves of the domain, 
in the z-direction, is small but noticeable. This suggests that enough randomness was 
present to trigger an instability, if such an instability exists. The spectrum, shown 
in figure 10 (b), reveals significant energy in the ‘sub-subharmonic’ region. However, 
the first subharmonic mode still dominates. The results in figures 9 and 10 suggest 
the possibility of generating incipient turbulent spots by using large enough periods 
both in the x- and z-directions. 
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FIGURE 10. Simulation with increased A%, A,,, = 1.5 yo. (a) Passive particles, ( b )  spectrum. See. 
figures 2 (9)  and 4(c). 

3.5. Discussion 

The results presented in this section are in good agreement with Herbert’s analysis, 
and their sensitivity to the arbitrary parameters that had to be prescribed was shown 
to be very moderate. The agreement with Saric et aZ.’s (1984) experimental results 
is good for the lower values of A,,,. On the other hand, the computed threshold 
between the C-type breakdown (wide structures in the z-direction) and the H-type 
(narrower structures) is over 1 yo, when the experimental value is about 0.35%. In 
addition, a pure K-type breakdown is never predicted even at  high amplitudes. The 
trend is for the numerical results to match the experimental results at lower 
amplitudes. In terms of the breakdown location, both sets of results show C-type 
breakdown occurring beyond Branch 11, H-type breakdown near Branch 11, and K- 
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or mixed-type breakdown upstream of Branch 11, the computed breakdown being 
slightly farther downstream (compare our figure 3 and Saric et aL’s figure 5 ) .  The 
agreement could probably be improved further by raising the noise level in the 
simulations. 

The behaviour of the flow for A,,, near the C- to H-type threshold is illustrated 
by the spectra in figure 4(a-c). They show that the C-mode (b = 0.14) grows first, 
when the TS-wave amplitude is low. Further downstream, if A,,, is high enough, 
the H-mode (broadband) grows. It may or may not ‘catch up’ with the C-mode before 
breakdown. Figures 2(f )  and 4(b)  show that with A,, = 1 % it did not catch up, 
resulting in a C-type breakdown. The competition between the two modes depends, 
to some extent, on the fetch and on the noise level. The same can be said of the 
competition between the H- and K-modes; figure 3(d) shows the K-mode starting 
from a lower level, but consistently having a slightly larger growth rate than the 
H-mode. To study these fine effects one could consider ‘shaping’ the spectrum of 
the random disturbances instead of keeping it white, but this would enlarge the 
parameter space to be explored. One could also input random disturbances contin- 
uously instead of only initially; this would shorten the ‘memory’ of the flow by 
preventing the decay of some waves to very low levels of energy, and may be closer 
to the experimental situation. It could essentially eliminate the influence of the fetch. 

One should note that in the experimental pictures, the breakdown that is 
interpreted as a K-type looks much more irregular than the C- and H-type 
breakdowns and has some features of a mixed-type breakdown (Thomas 1983; Saric 
et al. 1984). Herbert (1985) studied Klebanoff et aZ.’s (1962) experiment in detail. The 
experiment produced a K-type breakdown, but Herbert’s theory predicts an H-type 
in the sense that the computed subharmonic-mode growth rates are consistently 
higher than the fundamental-mode growth rates (figure 5) .  He concluded that in the 
experiment the fundamental mode was receiving more energy than the subharmonic 
mode because of non-uniformities of the mean flow in the z-direction. These 
non-uniformities may be ‘chopped’ by the ribbon at the frequency of the TS wave. 
Recall also that the K-type instability mechanism is not very selective in terms of 
spanwise lengthscales. One may ask whether, by adding strips of tape to the plate, 
Klebanoff et al. (1962) merely suppressed the wavering of a well-defined K-type 
pattern, or actually changed the breakdown type from mixed (aa in figure 2h) to K. 
The present results, and Herbert’s, may prompt a more cautious interpretation of 
the experimental visualizations. 

These considerations show that the disagreement between numerical and experi- 
mental results cannot be considered as final unless all the disturbances, including the 
ones that are classified as ‘noise’, are completed controlled. One should also keep in 
mind the sources of error in the theoretical and numerical studies. The ideal situation 
is a perfectly uniform (in z and t ) ,  spatially developing boundary layer, with spatially 
developing disturbances. Like Herbert, we are treating a parallel mean flow and 
time-developing disturbances. The non-parallel character of the mean flow is known 
to affect the critical Reynolds number of TS waves to some extent; its effect here 
is unknown. The periodic assumption loses some of its validity precisely at the 
beginning of the nonlinear stage, when the growth rates increase (the experimental 
visualizations show the three-dimensionality changing from unnoticeable to strong 
in about three wave lengths). Thus the question of which type dominates in the ideal 
situation can receive a definitive answer only from refined experiments, or from 
simulations or theories in which the parallel-mean-flow and periodicity assumptions 
have been discarded. 
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4. Conclusions 
The early three-dimensional stages of ribbon-induced transition in a Blasius 

boundary layer were simulated numerically. The mean flow was treated aa parallel 
and the disturbances as spatially periodic and time-developing. The concurrent 
growth of the boundary-layer thickness, the two-dimensional wave amplitude, and 
the three-dimensional disturbance amplitude was reproduced. The numerical periods 
and the type of disturbances were chosen to influence the physical processes as little 
as possible. Tests were conducted to rule out a strong dependence on numerical 
parameters. 

The results are in agreement with Craik’s analysis for low TS-wave amplitude, and 
with Herbert’s analysis for all amplitudes. The agreement with Saric et al.’s (1984) 
experiments is good at  low amplitudes, but only fair at higher amplitudes. For a given 
amplitude, the numerical results tend to agree with experimental results correspond- 
ing to lower amplitudes. The disagreement is at least partly explained by differences 
in the three-dimensional excitation of the boundary layer, even though in both cases 
it had a random character. This illustrates again the extreme sensitivity of 
transitional phenomena in Blasius flow. It suggests that further study of these fine 
effects should focus on devising the most credible procedure to input disturbances. 
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